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Abstract: In this paper, Inspired by the recent successes of deep learning in many 

application domains. we study deep-learning-based power control methods for Multi-

user interference network, in order to ensure the quality of service (QoS) requirement 

of each user and the maximum transmission power constraint of each node. which to 

boost the throughput of the whole network. Due to the inter-user interference, to 

solve the problem of maximum sum rate in multi-user interference channel, the 

considered problem is nonconvex and NP-hard. Different from traditional optimization 

techniques, we rely on the deep-learning (DL) method to find the solution adaptively, 

we proposed a power control framework based on graph convolution neural network 

(GCN) to learn the optimal power control in an unsupervised manner. The proposed 

framework firstly transforms the wireless interference channel into graph data 

structure, and proves the disorder of the interference channel. Then, according to the 

characteristics of power allocation criteria, the GCN network structure is constructed. 

Due to the QoS constraints in the optimization problem makes things even more 

complicated. To tackle this difficulties, we adopt to add a penalty term in the loss 

function to solve the rate constraint problem of users. Simulations demonstrate the 

effectiveness of the proposed GCN-based power control method. 

 

Keywords: Deep learning, quality of service, sum rate, graph convolution neural 

network, power control. 

 

1. Introduction 

In recent years, the number of wireless mobile users has increased due to the rapid 

development of mobile Internet and the continuous updating of intelligent terminal 

technology. This tendency is expected to continue over the next few years[1]. Next-

generation mobile networks are committed to developing key technologies to meet 

the needs of high data rates, low power consumption, and massive connectivity, 
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ensuring the quality of service across the network (QoS)[2]. With the increasing 

popularity of wireless equipment, more and more users appear in wireless 

communication, which makes the interference between users become more and more 

serious, increasing the demand for transmit power control of interference network. 

The solution to this problem has a significant impact on today's wireless network. 

Effective resource allocation is becoming increasingly important in wireless network 

optimization. However, many of these common resource allocation problems are 

nonconvex, such as power control [3][4][5] ,which is extremely difficult to calculate. 

Most previous research on resource management has treated resource allocation as 

an optimization problem, with researchers employing corresponding optimization tools 

to solve these problems. The problem of power control becomes more complicated as 

more QoS constraints are added. For example,paper[6] proposed the Geometric 

Programming (GP) method to solve the problem of maximizing the weighted sum rate 

while adhering to explicit QoS constraints. The SCALE algorithm was proposed in [7] 

to solve a series of approximated convex problems. In [8],A new method based on 

sequential quadratic programming (SQP) is proposed to solve the convex optimization 

problem, which can improve the sum rate of a small cell network while ensuring the 

QoS requirements of each user and the maximum transmit power constraint of each 

node. These algorithms need a lot of iterative calculations to converge, and complex 

matrix operations, such as singular value decomposition, matrix inversion and so on. 

Usually included in each iteration. Therefore, applying them to real-time systems may 

encounter many great challenges due to high computational complexity. 

Deep learning has had great success in computer vision, natural language processing 

and some other applications. Recent results also show that deep learning can be a 

promising tool in solving difficult communication problems.The author in [9], to solve 

the power control problem, proposed a multi-layer perceptron (MLP) to approximate 

the input-output mapping of the classic weighted minimum mean square error 

(WMMSE) algorithm [10] to speed up the computation. However, because the primary 

goal in this case was to regenerate a WMMSE-based scheme, the achievable capacity 

of the DNN-based scheme cannot be greater than that of the WMMSE-based scheme. 

To solve the above problems, the paper [11] proposed a DL-based method that uses 

unsupervised learning and ensemble learning to find the global optimal solution,which 

uers with poor channel conditions may be turned off. The author in [12] proposes the 

use of graph neural network architectures to analyze power control and beamforming 

problemsUnder the co-channel deployment, some of the users may experience 

significantly greater performance degradation than others. Thus, a guaranteed quality 

of service (QoS) becomes necessary[6].The minimum QoS refers to each user's 

minimum rate requirement. The optimization maximizes the overall rate of the system 
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under the guaranteed minimum rate for each user. 

In this paper, we study power control framework based on GCN for Multi-user 

interference network. Specifically, we formulate a sum rate maximization power 

control problem subject to QoS constraints for the transmitter and the receiver. The 

considered sum rate maximization problem is nonconvex and difficult to solve. In order 

to develop a GCN-based based solving method, we propose creating a new loss 

function that penalizes the violation of the constraint to solve the minimum rate 

constraint,which penalty term is used to encourage network output to meet the rate 

constraint.Then, GCN constructed leveraging the unsupervised learning strategy. The 

GCN adjusts its parameters by minimizing the loss function computed from the 

negative value of the objective function. Using this unsupervised learning strategy, the 

constructed GCN network output optimized power when channel state information is 

input. The effectiveness of this method is confirmed by simulation results. 

The rest of this paper is organized as follows. In Section II, we present the system 

model.Then,a GCN-based power control framework is devised in Section III. 

Simulation results are presented in Section IV. Finally, we draw conclusions in Section 

V. 

 

2. SYSTEM MODEL 

We consider a general K-user single-antenna interference channel as shown in Fig. 1. 

It is assumed that all transmitter-receiver pairs are synchronized and share the same 

narrowband spectrum. The received signal at the k-th receiver is given by 

                                              (1) 

Where  denotes the set of transmitter-receiver pairs. denotes 

the direct-link channel between the k-th transmitter and receiver, denotes the 

cross-link channel between transmitter k and receiver j,  denotes the signal 

transmitted by the k-th transmitter, and  denotes the receiver noise, 

which is independent across both time and users. 
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Fig. 1 The K-user interference channel. 

 

According to the settings on, The k-th receiver's signal-to-interference-plus-noise ratio 

(SINR) is given by 

                                                                     (2) 

Where  is the power of the k-th transmitter,  denotes the additional noise power 

of the k-th receiver. 

The achievable rate of the k-th receiver is given by 

                                                                           (3) 

Where denotes the joint the power allocation vector of all users. 

The maximization of the sum rate problem is formulated as 

  

                                               
 

                        (4) 

        
                                            

Where is the minimum required rate of the k-th receiver. we define

 and , The problem (4) is noncovex because 

both the objective and QoS constraints of all users are nonconvex, making obtaining 

the global optimal solution NP-hard[13][14]. 

If the target rate is large, the problem may be unsolvable. It is not difficult to develop 

a standard for check its feasibility[4][14].For a receiver k, its received SINR value 

needs to be at least ,to satisfy its minimum rate requirement. Defined 
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matrix A is given by 

                                                     (5) 

Where  denotes the (k,j)-th element of A, If the maximum eigenvalue of B is less 

than 1, there is possible to find a feasible solution as 

                                                             (6) 

where I denotes an K × K identity matrix and  denotes a K × 1 column vector with 

the i-th element  as 

                                                        (7) 

In the power allocation ,if all elements are in range between 0 and .As 

mentioned above,the power allocation  is a feasible solution of the maximization of 

the sum rate problem. 

Different from the traditional algorithm using convex optimization method, we propose 

a GCN-based method in the next section to solve the problem of maximizing the sum 

rate. 

 

3. Power Control Scheme Based on Graph Convolution Network 

In this section, we first create a basic structure of GCN network, followed by an 

introduction to the feasibility of GCN in power allocation.Then we model a K-user 

interference channel and analyse the permutation invariance of interference channels 

in power allocation problem.Under the graph model representation of interference 

channel.We propose A node update mechanism and construct the corresponding GCN 

network structure to solve the optimization problem of the above power criterion. 

3.1 The Fundamental Structure of a Graph Convolution Network 

GCN, like MLP or CNN, has a layer structure. In GCN, the update rule at vertex  of 

layer  is expressed as follows: 

             (8) 

                                                                 (9) 

Where  denotes the set of neighbor nodes of node ,  denotes the set of all 

edges with  as an end point,  and  are two functions, 
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 denotes the characteristics of edge ,  denotes the -th layer’s out feature of 

vertex ,  is an intermediate variable. 

3.2 Power Allocation Framework Based on GCN  

When we apply GCN to wireless resource allocation, an important factor is to consider 

the geometric properties of interference channels. According to the mapping 

relationship between channel matrix and optimal power allocation, the geometric 

properties of interference channels can be verified. 

For a given k, let  denotes the mapping relationship between the channel matrix 

and transmission power of the k-th transmitter, i.e., ,then  

denotes any permutation matrix satisfying ,then an equation is given 

by 

                                             (10) 

The Equation (10) shows that the interference channel has disorder or permutation 

invariance, which means that what matters is the set of interference channel 

coefficients rather than their order. The permutation invariance of the channel matrix 

in power allocation demonstrates that considering neighboring components is 

pointless because there is no correlation between elements after arrangement. The 

interference channel is typically expressed as a channel matrix of Euclidean data 

structure in power allocation based on MLP and CNN. The introduction of the graph 

data structure demonstrates that node V also only pays attention to the set  of 

surrounding nodes and ignores the order, indicating that the interference channel is 

acceptable for representation by a non-Euclidean graph data structure. 

 

 

 

 

 

 

 

 

 

Fig. 2 The data structure of interference graph 

In Fig.2(a), the pairs between the transmitter and receiver are regarded as a node, 

each link as an edge, and the weight of each edge is the channel gain. Consider each 

transmission pair to be a node and each interference link to be an edge, a graph model 

for wireless interference channel is constructed as shown in Fig2(b). The channel gain 
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of the corresponding communication link and the channel gain between two nodes of 

the interference link, respectively, determine the weights of features and edges. As a 

result, any two nodes have two directional edges. In this way, the original interference 

channel model is depicted in fig. 2(b) as a weighted directed graph. 

 

Fig. 3  The structure of power allocation in the proposed GCN 

Based on the graph model of wireless interference channel mentioned above, we 

adopt GCN to power allocation. For the node ,the Fig. 3 depicts the power allocation 

structure and the update rule is 

                                       (11) 

                                           (12) 

                                                                     (13) 

Where MLP1 and MLP2 denote two different MLPs, CONCAT denotes the operation 

that concatenates two vectors together,  denotes the feature vector of the edge 

connecting vertex  and vertex ,  denotes the output characteristics of -th 

layer of GCN at vertex V. In the problem of power allocation,  denotes the output 

power of the node .For the initial value of  as initialize to .The network 

structure of MLP1 and MLP2 are shown in Tables 1 and 2, respectively. 

Table 1 MLP1 network structure of AGGREGATE function 

Neural network layer Content output dimension 

Input                Node characteristics and edge characteristics of neighbors          32+2=34 

Hidden layer 1 Linear(34,16)+ReLU 16 

Hidden layer 2 

Hidden layer 3 

Linear(16,1) 

Sigmoid 

1 

1 
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Table 2 MLP1 network structure of COMBINE function 

Neural network layer Content output dimension 

Input        Node characteristics and edge characteristics of neighbors          10 

Hidden layer 1 Linear(4,32)+ReLU 32 

Hidden layer 2 

Hidden layer 3 

Linear(16,32) 

Linear(16,32) 

32 

32 

 

The final output of GCN is the transmission power of the transmission pair that 

represented by the node, thus the output dimension is set to 1.Meanwhile, in order to 

limit the output power to the maximum output power, the output layer activation 

function of MLP 2 adopts Sigmoid activation function. While the activation functions of 

other layers of MLP1 and MLP2 are linear rectifier units (ReLU). 

We adopt the adopted training method is unsupervised manner, ,however, the loss 

function is the key of the unsupervised learning process. As a result, only the channel 

matrix sample is required during the training process, and no label is required. we 

define the loss function according to the objective function of (4),which is written as 

                  (14) 

Where θ denotes the parameters of the neural network. The loss function that can be 

directly optimized by stochastic gradient descent. The penalty term is used to 

encourage network output to meet the minimum rate constraint. If , 

i.e. the rate constraint is not met,  and the corresponding 

penalty term will force the network parameters to be updated in the direction that 

satisfies the constraint.On the contrary, if ,  

and the network training will be unaffected by the corresponding penalty item. In this 

case, the training process will focus on improving the system sum rate by making the 

network output meet the rate constraints of other receivers. The scaling factor , 

which is a hyperparameter, balances the trade-off between different terms in the loss 

function. If it is too large, the network will focus on meeting the rate limit at the 

expense of sum rate performance; If it is too small, the network may be unable to 

generate a feasible power profile.  

Different from the MLP-based method, the GCN-based method needs to transform the 

channel matrix into the graph data structure. The establishment, training and testing 

of GCN model are based on Pytorch Geometrics [15]. 

 

4. Simulation Results 

In this section, we present the simulation results to demonstrate the effectiveness of 
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the proposed power control scheme. In the experiments, the channel state information 

service is distributed in this experiment using a complex Gaussian with a zero mean 

value and a single bit variance. i.e.,  Without loss of 

generality, the noise power is normalized, i.e., . 

We evaluated the proposed power control scheme, considering the cases of K=3 and 

K=6. In order to compare the performance, we compare it to the Geometric 

Programming (GP) method and Exhaustive search method proposed in reference 

[6].The GP-based method , as we all know, is a high-performance algorithm for solving 

explicit QoS constraints. It approximates the original non-convex problem as a series 

of convex problems and solves these convex problems iteratively using geometric 

programming until the solution converges. 

We generate 10000 channel samples to train the GCN network. Due to the high 

complexity of GP, the results in this section are obtained by simulating 1000 channel 

samples .Thus the test dataset contains 1000 network realizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Average Sum rate comparison among 3-users from different methods 
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Fig. 5 Average Sum rate comparison among 6-users from different methods 

 

4.1 Performance Comparison 

In Fig.4, we compare the sum rates of K=3 under different minimum rate constraints 

and study the impact of the number layers. we set the numbers of layers as 

{1,3,5,7,9}.We then study the impact of the number of layers and observe the test 

performance of the proposed scheme .The loss function is constructed by (14) and 

the scaling factor  of the loss fuction is set to 10. Each user is set a minimum rate 

to ensuring a minimum requirement of QoS, We set these value as 

,the performance of the GCN is shown in Fig.4. We can see 1-

layer GCN outperformers GP by 13% and the performance of 3-layer GCN is 

approximately 26% higher than that of GP. Similarly, the performance is higher than 

the exhaustive search method. Intuitively, the GCN with a larger number of layers will 

perform better, because m-hop information is gathered if a m-layer GCN is used. This 

is not surprising given that GCN captures more information with more layers. We also 

see a significant performance improvement from 1-layer GCN to 3-layer GCN, which 

demonstrates that multi-hop information is critical for the performance. 

4.2 Expandability and QoS Assurance Capability 

Under different minimum rate constraints , we demonstrates the achieved sum rate of 

the proposed methods in a system with K = 6. In the simulations. We set the QoS 

threshold of each user as  and . In Fig.5, 

It is shown that the proposed GCN also achieves a better performance than GP. As a 
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result, leveraging the graph structure of the interference channel appears to be 

beneficial for maintaining good performance when the network size is large. 

 

Table 3 The transmission power and achievable rate of each user with K=3 

QoS rate threshold per user (0.5 , 0.3 , 0.2) 

Output power rate vector (0.5127,0.9962,0.3752) 

Rate of each user (0.6889 , 0.3519 , 0.2165) 

 

Table 4 The transmission power and achievable rate of each user with K=6 

QoS rate threshold per user (0.5,0.1,0.1,0.1,0.1,0.1) 

Output power rate vector (0.8725,0.6299,0.5921,0.5187,0.6759,0.5239) 

Rate of each user (0.5505,0.1196,0.1107,0.1207,0.1194,0.1061) 

 

In the above Table 3 and Table 4, in the case of K=3 and K=6, according to the set 

user QoS rate constraint and the transmission power constraint, the optimized 

transmission power vector output by the network satisfies the transmission power 

constraint, and the rates of all users are higher than the corresponding predefined 

QoS values. It is concluded from this example that the proposed method is scalable 

and can be extended to more users' systems. 

 

5. Conclusion 

In this paper, We studied the sum rate maximization power control problem to the 

QoS constraints of the users for the K-user interference channel. We propose to 

transform the wireless interference channel into a corresponding graph data structure 

for power control using unsupervised learning graph convolutional neural network. 

Under the QoS rate constraints of users, the penalty term is added to the loss function 

to solve the rate constraint problem. Simulations demonstrate the effectiveness of the 

proposed power control method in guaranteeing the QoS of the users when attempting 

to maximize the sum rate of the whole network. 

 

References 

[1] M. Noura, R. Nordin. A Survey on Interference Management for Device-to-Device 

(D2D) Communication and Its Challenges in 5G Networks[J]. Journal of Network 

and Computer Applications, 2016, 71(8): 130-150. 

[2] I. -. Hou, V. Borkar and P. R. Kumar, "A Theory of QoS for Wireless," IEEE INFOCOM 

2009, 2009, pp. 486-494, doi: 10.1109/INFCOM.2009.5061954. 



Volume 9 Issue 3 2022 
 

   40 

[3] M. Hong and Z.-Q. Luo, “Signal processing and optimal resource allocation for the 

interference channel,” EURASAIP E-Reference Signal Process., vol. 2, no. 39, 

pp.409–469, Jun. 2012. 

[4] M. Chiang, P . Hande, T. Lan, C. W. Tan, et al., “Power control in wireless cellular 

networks,” F ound. Trends Networking, vol. 2, no. 4, pp. 381–533, 2008. 

[5] H. Qin, X. Chen, Y. Sun, M. Zhao, and J. Wang, “Optimal power allocation for joint 

beamforming and artificial noise design in secure wireless communications,” in 

Proc. ICC, Kyoto, Japan, 2011, pp. 1-5. 

[6] M. Chiang et al., “Power control by geometric programming,” IEEE Trans. Wireless 

Commun., vol. 6, no. 7, 2007. 

[7] J. Papandriopoulos and J. S. Evans, “SCALE: A low-complexity distributed protocol 

for spectrum balancing in multiuserdsl networks,” IEEE Trans. Inf. Theory, vol. 55, 

no. 8, pp. 3711–3724, 2009. 

[8] Khan W U, Ali Z, Waqas M, et al. Efficient power allocation with individual QoS 

guarantees in future small-cell networks[J]. AEU-International Journal of 

Electronics and Communications, 2019, 105: 36-41. 

[9] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu and N. D. Sidiropoulos, "Learning to 

Optimize: Training Deep Neural Networks for Interference Management," in IEEE 

Transactions on Signal Processing, vol. 66, no. 20, pp. 5438-5453, 15 Oct.15, 2018, 

doi: 10.1109/TSP.2018.2866382. 

[10] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE 

approach to distributed sum-utility maximization for a MIMO interfering broadcast 

channel,”IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep. 2011. 

[11] F. Liang, C. Shen, W. Yu and F. Wu, "Towards Optimal Power Control via 

Ensembling Deep Neural Networks," in IEEE Transactions on Communications, vol. 

68, no. 3, pp. 1760-1776, March 2020, doi: 10.1109/TCOMM.2019.2957482. 

[12] Shen Y, Shi Y, Zhang J, et al. Graph neural networks for scalable radio resource 

management: Architecture design and theoretical analysis[J]. IEEE Journal on 

Selected Areas in Communications, 2020, 39(1): 101-115. 

[13] K. Shen and W. Y u, “Fractional programming for communication systemspart i: 

Power control and beamforming,” IEEE Trans. Signal Process., vol. 66, pp. 2616–

2630, May 2018. 

[14] L. Qian, Y . Zhang, and J. Huang, “MAPEL: Achieving global optimality for a 

non-convex wireless power control problem,” IEEE Trans. Wireless Commun., vol. 

8, no. 3, pp. 1553–1563, 2009. 

[15] Fey M, Lenssen J E. Fast graph representation learning with PyTorch 

Geometric[J]. arXiv preprint arXiv:1903.02428, 2019. 


